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Abstract—BLÅTANT is a peer-to-peer overlay management
protocol which aims at maintaining an optimized topology to
reduce the cost of broadcasting a message to all peers. BLÅTANT

is based on bio-inspired methodologies that employ ant-like
mobile agents and pheromone trails. The overlay maintained
by this protocol can be classified as self-structured, because
the topology is maintained in an adaptive way in order to
fulfill certain criteria, namely an upper bounded diameter and a
lower bounded girth (length of the smallest cycle). In this paper
we consider the -S variant of the algorithm and focus on its
robustness and efficiency in various churn situations. Our goal is
to provide an in-depth analysis of the behavior of the protocol in
a simulated network using the OverSwarm simulation platform.
The obtained results are compared with those of two traditional
peer-to-peer protocols, namely CHORD and GIA, in order to
achieve a better understanding of the benefits and drawbacks of
the considered bio-inspired solution.

I. INTRODUCTION

An essential step in the research and development of novel

network protocols is the comprehensive study of their behavior

under realistic conditions and accurate usage models. These

details include bandwidth limits, latencies and jitter at the

underlay level, as well as churn patterns at the higher level. In

this paper we aim at conducting a detailed analysis of a variant

of the BLÅTANT algorithm [1], a peer-to-peer overlay based

on self-organization principles and bio-inspired techniques.

The maintenance protocol optimizes the logical connections

between peers in order to achieve a bounded diameter (i.e.

the maximum distance between each pair of nodes) while

preserving only a minimal necessary number of redundant

paths for resiliency. Two versions of the algorithm have

been developed, namely the BLÅTANT-R variant [2] and the

BLÅTANT-S [3] one. A comparison of the underlying logic

and the implementation details of both versions is available in

[4]. In this paper we focus on the -S variant, as its working

principles are simpler and better match the philosophy of bio-

inspired solutions. The overlay maintenance protocol (which

will be detailed in Section IV) employs different species of

ant-inspired agents that perform simple tasks on the network,

such as collecting information about visited nodes and creating

new logical connections. As with many self-organized and

bio-inspired solutions, the behavior of the protocol is non-

deterministic, and is dependent on the behavior of each agent.

Nonetheless, the collective behavior of the whole colony of

agents converges toward a common goal of maintaining a con-

nected and optimized topology. However, because some of the

agents are partially driven by stochastic behaviors, and because

of the overall complexity of the system (which is composed

of several agents of different species), a satisfying analytical

proof is difficult to achieve. Accordingly, the operation of the

system can be easier to understand by means of simulations

under controlled conditions. In [4] the performance of the

algorithm was evaluated in a custom simulator which had

limited support for realistic network conditions. While the

obtained results were enough to determine the correctness of

the proposed approach (in terms of optimization constrains

and robustness), a comprehensive evaluation was not carried

out and was left as future work. The present research aims

at exploiting a more accurate simulation framework in order

to determine the efficiency and robustness of the algorithm

with increased detail. We deem that this step can provide

valuable information and serve as a reference work to drive

future developments of similar protocols based on bio-inspired

techniques. To achieve our goal we employ a novel simulation

platform called OverSwarm, which extends the well known

OverSim peer-to-peer simulator by providing explicit support

for ant-inspired protocols. By means of an extensive eval-

uation in diverse realistic situations that reproduce network

phenomenons such as jitter, queuing effects and churn patterns,

we aim at providing a detailed report on the behavior of

BLÅTANT-S. Of particular interests is the robustness of the

overlay when faced with churn patterns that replicate common

user behaviors in peer-to-peer networks, such as the ones based

on lifetime models following Pareto or Weibull distributions.

Another concern is the network traffic generate by mobile

agents, and how it is affected by churn. Furthermore, we aim

at comparing BLÅTANT-S with two traditional approaches

(namely CHORD [5] and GIA [6]) under the same conditions,

in order to determine the benefits and drawbacks of the

considered bio-inspired solution. The remainder of this paper

is organized as follows: in Section II we list the research goals

and the research questions that are going to be answered by

the present study; in Section III we detail the OverSwarm

simulation platform, and discuss its architecture. In Section

IV we detail the BLÅTANT-S algorithm and present some

excerpts of its implementation using OverSwarm. In Section

V we briefly discuss two traditional protocols that are used in



our comparative evaluation, whereas in Section VI we present

the considered evaluation scenarios. Section VII presents and

discusses the obtained results, whereas Section VIII provides

our conclusions on this work and some insight on future

research.

II. RESEARCH GOALS

The present work aims at improving our understanding of

the BLÅTANT-S algorithm by providing additional simulation

data. Although the protocol has already been extensively

evaluated under different network and usage conditions in

[4], important questions remain open. Accordingly, we set the

goals of this research as follows:

• Analyze the behavior of BLÅTANT-S in realistic network

conditions using a discrete time simulator that replicates

latency, queuing effects, and jitter.

• Validate the robustness and reliability results presented in

[4] by performing extensive evaluation the bio-inspired

protocol under churn.

• Evaluate the use of the OverSwarm platform to support

the development of ant-inspired network algorithms.

• Compare the reliability and robustness of bio-inspired so-

lutions such as BLÅTANT-S with traditional approaches,

namely GIA [6] and CHORD [5].

• Compare the bandwidth requirements of bio-inspired and

traditional solutions.

• Evaluate the robustness as well as the adaptiveness of

BLÅTANT-S versus traditional approaches in the event

of network failures.

To achieve these goals we employ a different simulation

platform than previous experiments, and thus a complete

rewriting of the protocol implementation is necessary.

III. SIMULATION PLATFORM

To conduct our evaluation we implemented the BLÅTANT-S

algorithm on the OverSwarm platform [7]. The main benefits

of our choice are the availability of a realistic underlay

model, as well as churn generators that enable accurate testing

scenarios. In this section we briefly describe the architecture

of the OverSwarm platform and highlight its main features.

OverSwarm is an extension of the popular OverSim [8]

simulation platform, which is based on the discrete event

simulator OMNET++ [9]. The framework is modular, and

each component communicates by means of messages sent

through communication channels linking input and output

ports. Whereas OverSim focus is put on traditional peer-to-

peer protocols that have nodes exchanging messages, Over-

Swarm concentrates on mobile agent ones. The mobile agent

paradigm involves intelligent entities travelling across the net-

work and performing some tasks on visited nodes. With strong

migration capabilities, each agent carries its own execution

status; in the case of transparent migration this status is auto-

matically saved and restored when the agent moves from one

node to another. This important difference between traditional

and agent protocols is reflected in the development model of

OverSim and OverSwarm. With the former the protocol is

defined by the information carried by messages exchanged by

peers, and by the response behaviors of a peer upon receiving

and parsing a message. In OverSwarm the implementation

of a bio-inspired algorithm is decoupled between the agent

behavior (which also defines the information sent over the

network) and the behavior of each peer, which can be either

periodical or triggered by the reception of incoming data.

OverSwarm enforces this decoupling by dividing the imple-

mentation of a protocol between one ore more C++ modules,

which define the functionalities and information stored by each

peer, and the behavior of agents, which is defined using a

Lisp-like language. Agents can access data managed by the

node through specially defined methods that can be invoked

from Lisp. The use of a specific language for the definition of

agent’s behavior also enables strong and transparent migration

capabilities, which is typical of ant-inspired protocols. Further

details on the OverSwarm framework can be found in [7].

IV. ALGORITHM DESCRIPTION

The BLÅTANT family of distributed algorithms maintains a

peer-to-peer overlay with a continuously optimized topology

that should reduce the communication overhead generated by

flooding protocols. In this context, two algorithms have been

developed: BLÅTANT-R and BLÅTANT-S. The former imple-

ments a more precise optimization process that consumes more

traffic and imposes a slightly higher computational complexity

on each node, while the latter follows a simpler approach

that still provides satisfactory results, as proven in [4]. These

algorithms are based on bio-inspired principles that mimic the

behavior of insects; in particular, the swarm intelligence [10]

and the ant colony optimization [11] paradigms are employed.

In this regard, the network can be viewed as the environment

where insect-like software agents live and migrate: each peer

represents a nest were incoming agents can access local service

and new agents could be generated. In contrast to traditional

network algorithms, the protocol is not only defined by the

operations executed by nodes and the exchanged information,

but also from the behavior of each agent. In the following the

details of the algorithm will be presented, and the necessary

links between the formal description and the actual imple-

mentation using OverSwarm will be provided to illustrate the

benefits of our approach.

A. Optimization process

BLÅTANT-S does not only strive to maintain a connected

overlay, but also aims at optimizing the topology of logical

connections between peers in order to reduce the global

communication cost when multicasting information across

nodes (for example using flooding [12], [13], [14], gossiping

[15], or random walk [16], [17], [18] protocols). The overlay

optimization process is controlled by two simple rules that

determine the creation of new logical links and the destruction

of existing ones. The goal of the link creation phase is to

limit the diameter of the network according to an optimization

parameter D. More specifically, a new link is created between



two peers if a distance greater than

2D − 1

is observed. Conversely, removing links aims at breaking up

cycles in the topology that might cause message retransmission

when the overlay is flooded with queries. The rule for breaking

up cycles is used to determine if two neighbor peers must be

disconnected, and applies when there exist an alternative path

that connects them whose length is less than

2D − 3

hops. To determine the distance between peers as well as

to perform connection and disconnection, ant-like agents are

employed.

B. Pheromone trails

Pheromone trails are used as a form of indirect communica-

tion between insects. Individuals of a colony can leave some

chemical in the environment to mark interesting paths, which

can be later exploited by other agents. Chemicals naturally

evaporate with time, rendering trails less desirable: to avoid

so, concentrations can be periodically reinforced to keep them

alive. Artificial ants replicate pheromones concentrations by

associating a numerical value to links in the overlay that are

stored in a hashtable on each node: evaporation is simulated

by periodically reducing this value.

BLÅTANT-S employs pheromone trails in order to detect

node failures and abrupt disconnections in high-churn situ-

ations. Each agent deposits pheromone on each path while

migrating; the concentration of the pheromone determines

the liveness of nodes and enables the system to react ac-

cordingly. Two types of pheronomne trails, associated with

each neighbor on each node, are employed: beta (β) and

gamma (γ). On one hand, beta trails are reinforced by ants

arriving on a node, and are used to track communication

originating at neighboring nodes and detect disconnections;

if a beta trail completely evaporates a peer can deduce that

the corresponding neighbor failed (i.e. abruptly disconnected)

or that some communication problem exists, and initiate a

recovery procedure to connect with that part of the overlay,

namely by contacting the last known neighbors of the peer

that leftq. On the other hand, gamma pheromone trails are

used for two purposes: first, they ensure that all paths in

the overlay are equally explored by Discovery agents, second

they trigger ping traffic on the corresponding path to signal

aliveness of the node should normal traffic not be enough. To

achieve the first purpose, Discovery agents (discussed in the

following subsection) preferably follow paths with the lowest

concentration trails; for the second purpose, the decay rate of

γ trails is about two time faster than that of the β trails.

C. Agents

The communication protocol used by BlåtAnt is based on

different species of ant-like mobile agents. Each agent has a

different purpose and is able to transparently migrate from

peer to peer to perform its tasks. In the following we present

(while 1 (begin

(if (<= steps 0) (break))

(if (inform vector) (clear vector))

(push vector (getThisNode))

(if (> (len vector) vectorlength) (erase vector 0))

(var neighbors (getNeighbors))

(remove neighbors previous)

(foreach v in vector

(remove neighbors v))

(if (= (len neighbors) 0) (begin

(set! neighbors (getNeighbors))

(set! vector [])))

(if (< (random) kappa)

(set! nextStep (getLowestGammaTrail neighbors))

else

(set! nextStep (choose neighbors)))

(if nextStep (begin

(set! previous (getThisNode))

(set! steps (- steps 1))

(if (not (migration nextStep)) (end))))))

Fig. 1. Discovery Agent

and discuss the behavior of the most significant species; for

additional details on this subject please refer to [4].

1) Discovery: Discovery agents are periodically created on

each peer, according to some respawn probability. Each agent

wanders on the overlay for a predefined maximum number

of steps (hops in the overlay): on each peer the identifier of

the node (typically its IP address and port) is stored into a

bounded size vector. Subsequently, a candidate target node is

chosen among the neighbors of the current peer, such that

previously visited peers are not considered. If no candidate is

available, all neighbors are reconsidered. The ant can choose

between exploration of the overlay, by choosing a random

neighbor, or exploitation, by choosing its target according to

the concentration of local γ trails. More specifically, with a

given probability k, the agent migrates to a random neighbor,

otherwise it choses the neighbor associated with the lowest

concentration of gamma pheromone.

The behavior of the agent has been easily implemented

with OverSwarm, as shown in Figure 1. The agent executes

a series of operations on the current node, before migrating

to the next peer. The steps variable keeps track of the

current number of hops traveled in the overlay: when all

possible steps are expired the ant is killed. The addresses

of visited nodes are stored in a dynamic list vector. Each

time a new address is added to the list, its size bounds

are check, and exceeding information is eventually dropped.

Selection of the neighbor with the lowest gamma pheromone

concentration is implemented as a separate function named

getLowestGammaTrail. The migration function not

only performs the actual migration but also reinforces both

the γ pheromone trail at the source node, and the β one upon

arrival on the target node.

2) Optimization Link: Optimization Link agents are used to

create new logical links between nodes in order to optimize the

topology of the overlay. Agent are deployed by peers that want

to connect to some other node because the connection rule

applies; the ant starts from the node requesting the connection,

and migrates to its target (Figure 2). If the conditions on the

hop distance between the two nodes is fulfilled (as determined



(virtual $target)

(var source (getThisNode))

(if (migrate $target) (begin

(var d (getEstimatedDistance source))

(if (and (> d 0) (< d (- (* 2 (D)) 1 ))) (end))

(var isAcceptedConnection (connect source))

(if isAcceptedConnection

(if (migrate source)

(connect $target)))))

Fig. 2. Optimization Link Agent

by local cached information on the target node) the logical

link is created and the agent migrates back to the source peer

to complete its operations. The getEstimatedDistance

function returns the estimated number of hops separating the

current node from the source (according to locally cached

information), whereas the connect function creates a new

logical link to the specified node and initializes the corre-

sponding pheromone trails.

3) Unlink: Unlink agents are used to remove logical links

between nodes when the disconnection rule applies or when

a node wants to leave from the overlay. The Unlink agent

migrates between the nodes to remove the logical link infor-

mation and clear the associated pheromone trails on both.

4) Construction Link: Construction Link ones are used to

perform an initial connection between two peers in order to

let a new peer join the overlay. These species of ant are

also used to recover connectivity in the event of a failure.

Accordingly, the logical links created by these agents have

no optimization purposes (i.e. the connection rule must not

necessarily be satisfied).

Periodically, using the available information gathered from

other nodes through Discovery agents and Update Neighbors

agents, nodes detect and break up additional small cycles of

lengths of 3 and 4 hops.

TABLE I
BLÅTANT-S PROTOCOL PARAMETERS

Parameter Value Description

β decay 60s Evaporation time for the β
pheromone

γ decay 30s Evaporation time for the γ
pheromone

α max size 28 Maximum number of entries in the
α table

vector max size 15 Maximum number of entries in Dis-
covery ant vector

D 5 Topology optimization parameter
Max. optimization
links

6 Maximum optimization links on
each node

Max. node degree 8 Maximum outgoing links on each
node

Reconnection interval 30s Time to wait between connection
requests

α max age 1800s Time before discarding old informa-
tion

Respawn probability 0.05 Respawn probability for Discovery
ants

Respawn interval 100s Respawn interval for Discovery ants
and Update Neighbors ants

Recovery delay 15s Interval between recovery retries
when node is isolated

D. Protocol parameters

In all the experiments presented in the following of this

paper the configuration parameters of BLÅTANT-S have been

kept constant. A detailed overview of the considered values

is presented in Table I. These default values are based on our

previous experience with the protocol and provide a suitable

configuration for the considered evaluation scenarios.

V. COMPARISON WITH TRADITIONAL APPROACHES

As highlighted in the introduction, bio-inspired systems

might represent an interesting and valuable alternative to

traditional protocols. In order to foster the adoption of such

methodologies in the realm of distributed applications we

argue that a systematic comparison of both approaches (tra-

ditional and bio-inspired) is necessary. For this purpose the

evaluation presented in this paper also considers two existing

P2P protocols, namely CHORD [5] and GIA [6]. Our analysis

will focus on both the robustness of these systems in dynamic

conditions, as well as the network overhead resulting from the

topology maintenance tasks. In the following we briefly dis-

cuss the inner workings of both CHORD and GIA. We should

stress that only the topology maintenance part of both GIA

and CHORD are considered for comparison with BLÅTANT-

S; more specifically, we are interested in the ability of the

management protocol of maintaining a connected overlay, on

the characteristics of the resulting topology, and on the amount

of maintenance traffic.

A. Chord

CHORD [5] is a structured overlay implementing a dis-

tributed hashtable storage solution. Each node is assigned with

a unique identifier of m bits within a circular space of size

2m. The topology is organized as a logical ring where nodes

are ordered according to their identifier. Each node knows its

successor in the ring, i.e. the node whose identifier follows

in the identifiers’ space. When employed as a DHT, content

shared by nodes is assigned an key (typically a hash of the

data) of m bits, and is published on the node referred to as

successor(K) so that the identifier of the latter matches K

or follows it. In order to find successor(K) in the overlay,

either to build up the finger table or to lookup for a key, a

node starts by querying known nodes starting from the one

that appears closer to K , and repeats the process until the

target peer has been found. To speed up the look-up operation,

each node n maintains a routing table (called finger table) of

size m that contains the identifiers of other peers in the ring:

the entry at the ith position (1 ≤ i ≤ m) in the finger table

corresponds to the first node that succeeds n by at least 2i−1

hops in the ring, i.e. successor(s) with s = n + 2i−1. The

routing cost in a CHORD overlay of N peers is of O(logN)
hops. The finger table is updated by performing queries. In

the context of our evaluation, both predecessor, successors,

and finger nodes are considered as neighbors. A node joins

the overlay by sending a connection request to one of the

existing peers. The position of the newly inserted node in

the ring is determined by its identifier: because this operation



involves querying the network, the cost of a node join is

O(log2N) messages. When a node joins the overlay or leaves

the system, the successors pointer and finger tables of nearby

nodes in the ring are updated by means of a stabilization

procedure. To improve resilience in the event a successor

abruptly disconnects from the overlay, each node maintains

a list of nodes that succeed it in the ring. Peers periodically

ping their predecessors, successors and fingers, in order to

check for failed nodes. If a predecessor fails the node repeats

the joining process, conversely if a successor or a finger fails

a substitute is chosen among the known backup addresses.

For our evaluation we only consider the topological properties

of CHORD. Accordingly we do not perform any resource

discovery tasks on the overlay, nor we fully exploit the key

look-up mechanisms implemented by this peer-to-peer system,

apart for letting a new node join the overlay by querying its

position in the ring. The protocol parameters as used in our

simulations are listed in Table II.

TABLE II
CHORD PROTOCOL PARAMETERS

Parameter Value Description

m 160bits Size of the node’s identifier
joinRetry 2 Retries to join the overlay
joinDelay 10s Minimum wait between successive

join retries
stabilizeRetry 1 Retries after failed stabilize
stabilizeDelay 20s Minimum wait between successive

stabilizations
fixfingerDelay 120s Interval between finger table fix pro-

cess
checkPredecessorDelay 5s Interval for checking predecessor
successorListSize 8 Maximum number of peers in the

successor list

B. Gia

GIA [6] is a peer-to-peer protocol for unstructured overlays

that strives to address the scalability problems of its ancestor,

GNUTELLA [19]. The relationship between the two protocols

is reflected in the basic messages that both employ to discover

new peers in the network, namely ping and pong messages.

However, GIA incorporates a self-organizing topology man-

agement process that improves search operations, and makes

use of different querying techniques (like random walks) rather

than just relying on flooding with limited TTL (Time-To-Live).

Nodes rearrange their neighbors in order to maintain links

with peers that are well connected and are able to sustain

the resulting traffic; in this regard, each peer try to make

high-capacity nodes (nodes with high bandwidth and storage)

easily reachable (within few hops), which results in the latter

receiving the largest portion of the requests. To evaluate the

quality of current connections during the topology adaptation

process, each peer determines its satisfaction level (between 0

and 1). This value is related to the node’s capacity and that of

its neighbors, as well as to its degree. Each peer maintains

a cache of addresses of other nodes (which are candidate

neighbors); the cache is populated either from a list of well-

known nodes, or through ping-pong messages. Should the

level of satisfaction be too low, new neighbors are randomly

chosen from the cache. In order to control the maximum

traffic each peer receives, an active flow control mechanism is

implemented. Each node accepts incoming queries based on its

capacity: each peer periodically sends a token to its neighbors,

and the latter can only deliver a query back to the former as

long as a token has been received. If a neighbor does not

make use of its token, it is marked as inactive, and the spared

bandwidth is redistributed among its siblings. Queries traverse

the overlay typically using a biased random walk scheme, in

order to be directed toward high-capacity nodes that have a

higher probability of fulfilling the request. The parameters of

the protocol employed in our experiments are detailed in Table

III: the chosen values are based on the default configuration

provided by OverSim; the maximum number of neighbors is

based on a experiments presented in [20], which employed

overlays of comparable size as in our simulation scenarios.

The capacity of each node is determined uniformly at random

at node’s initialization.

TABLE III
GIA PROTOCOL PARAMETERS

Parameter Value Description

maxNeighbors 20 Maximum number of neighbors
minNeighbors 3 Minimum number of neighbors
topAdaptationInterval 120s Interval for re-evaluating node’s sat-

isfaction level and adapt topology
updateDelay 60s Interval for updating neighbors

about current node’s capacity
maxHopCount 10 Maximum TTL for sent messages
messageTimeout 180s Message timeout
neighborTimeout 250s Neighbor timeout
sendTokenTimeout 5s Interval for sending tokens to neigh-

bors
tokenWaitTime 5s How much to wait for a new token
keyListDelay 100s Delay when sending a new key to

neighbors

VI. EVALUATION SCENARIOS

We evaluate the behavior of BLÅTANT-S under both dif-

ferent churn-models and in communication failure situations.

In particular we consider various probabilistic lifetime dis-

tributions, such as Pareto and Weibull, as well as random

node removal with regular periodicity. For this purpose, the

dedicated support of the underlying OverSim platform is fully

exploited: the employed churn models are already imple-

mented and can be easily included in simulations. In contrast

to previous evaluations, such as the ones presented in [4] and

[2], the aim of this research is to establish the robustness of

the protocol using more realistic usage models, as previous

results were based on simplistic churn patterns, with nodes

periodically added and removed to the network following a

Poisson process. Moreover, we also conduct experiments to

establish the communication fault tolerance, by simulating

packet loss. Each experiment reproduces 6 hours of network

activity, where we distinguish between an initialization phase

and the real simulation: in the former, nodes just join the

overlay with a constant rate and no node quits the network;



conversely, in the latter the joining and leaving of peers is

determined by the considered churn model. It should be noted

that no intermediate transition phase is employed, although

supported by OverSim.

A. Traffic simulation and analysis

To determine the generated network overhead, the average

bandwidth consumed by each node is measured. Concern-

ing BLÅTANT-S, the actual message size resulting from

OverSwarm’s serialized agent state is considered. Although

more efficient implementations could potentially reduce the

amount of information exchanged by nodes, we also aim at

proving the effectiveness of OverSwarm for the deployment of

real systems using the same core components. The reported

bandwidth consumption only considers the payload size, not

the complete packet size (which include UDP headers). The

SimpleUnderlay model implemented by OverSim was chosen:

despite the name, latency, bandwidth, and jitter are fully

reproduced by the simulator. Nodes are mapped into a 2-

dimensional Euclidean space; latency is determined by means

of the distance between peers in this space, and is based on

Internet latency measurements obtained in the framework of

the CAIDA/Skitter [21] project so that node positions are set to

produce realistic latencies between all peers in the simulation.

The employed sample includes a pool of 15000 candidate

peers.

B. Churn models

In the initialization phase of all experiments an expanding

overlays is simulated: all nodes are connected to the network

with a frequency of 1 node every second. Nodes rely on

a globally accessible bootstrapping service to learn about

existing overlay nodes to connect to. Subsequently, to simulate

the dynamics of users joining and leaving the network, we

employ some of the churn models implemented by OverSim,

that reproduce typical patterns observed in real systems.

Amongst the available models, we considered two lifetime

based patterns (Weibull and Pareto), as well as simpler uniform

random pattern. On one hand, Weibull churn reproduces an

average lifetime (expected value) of 10000 seconds, and a

distribution parameter k equal to 1. On the other hand, Pareto

churn is based on [22], and uses an average lifetime of 10000

seconds and an α parameter equal to 3. The minimal lifetime

xm resulting from such parameters is thus 6666 seconds. The

corresponding cumulative distribution functions of the lifetime

for both models is plotted in Figure 3. These distributions

are also used to trigger the creation of a new node that will

join the overlay: new nodes are created after a dead time

drawn from the same probability function and an average of

10000 seconds. The Random churn model is based on the

following logic: every 4 seconds a node a random number is

drawn, and with 50% probability an existing node is removed

from the network, or a new one is added. In all experiments

BLÅTANT-S disconnection is performed in an abrupt manner,

to better evaluate the recovery mechanism of the algorithm.

Based on the obtained results, the Weibull churn model results

Fig. 3. Lifetime cumulative distribution function

in an average of 32 nodes added and 32 removed every 500

seconds in an overlay with an average of 512 nodes, and 65

nodes added and removed with an average of 1024 nodes.

Conversely, Pareto churn adds and removes an average of 34

nodes in a 512 nodes overlay every 500 seconds, while adding

and removing 65 in a 1024 nodes network. Finally, the random

churn pattern inserts and deletes 68 nodes in the 512 nodes

scenarios in the same period of time, and 75 nodes in overlays

of doubled size. From these figures, it is clear that Pareto and

Weibull churn models produce a slightly lower dynamicity in

the network compared to the simple random model with 1024

nodes, and a considerably lower dynamicity with 512 nodes.

As a baseline for comparison, simulations with stable overlays

without churn are also carried out.

C. Fault tolerance

Whereas churn models enable an evaluation of the resilience

of the overlay when nodes join and leave, separate scenarios

are required to determine the fault tolerance capabilities of

each system. In this regard, we simulate the loss of transmitted

packets and determine the effects on both the resulting traffic

as well as on the topology (which provides a hint of the

robustness of the system). All the aforementioned experiments

where thus repeated by introducing a probability of losing

packets during transmission; more specifically, each time a

UDP packet is transmitted it has a 10% probability of being

lost. Accordingly, packet loss influences the ratio between

sent traffic and received traffic. Because transmitted protocol

messages are relatively simple and their size is within the

maximum length of a UDP packet payload, we assume that our

packet loss chance leads to a message loss of equal probability.

To account for the failed delivery of such packets in our

bandwidth measurements, traffic results will only focus on the

amount of data sent by nodes.

VII. RESULTS

In this section we report the results obtained in our ex-

periments in relation with the goals set in Section II. The



Fig. 4. Weibull, 512 Nodes

presented data refers to an average over 3 simulation runs,

with the standard deviation clearly indicated by means of

vertical error bars. The dotted vertical line denotes the end

of the initialization phase, which occurs at about 512 seconds

into simulation in overlays of 512 nodes, and at 1024 seconds

in overlays of 1024 nodes, in compliance with a join rate

of 1 node every second. Our evaluation is conducted along

three main axis, namely connectivity, topology measurements,

and bandwidth consumption. For each concern we detail and

discuss here only the most significant results and present only

the corresponding graphs: additional graphs are available in

Appendix A.

A. Connectivity

Connectivity experiments aim at evaluating the ability of

the management protocol to maintain an overlay graph that

consists of a single, large partition. This property is important

when multicast communication is to be carried out on the

overlay, as it ensures that all nodes can be potentially reached

by simply flooding the network. In this respect, we report and

compare the size of the largest connected component (LCC) as

measured in our scenarios with different churn models, overlay

sizes, and communication reliability.

1) Connectivity with reliable communication: The first set

of results concerns the connectivity of the overlay when

communication between peers is reliable. More specifically,

we do not consider packet loss, and communication is only

affected by latency, jitter, and queuing effects.

Figures 4 and 5 depict the evolution of the LCC in over-

lays of 512 and 1024 nodes respectively, using the Weibull

churn pattern. At both scales, the deterministic behavior of

CHORD enables the algorithm to maintain a a single connected

component that spans over all peers, whereas BLÅTANT-S

attains an average of 98% in the 512 nodes overlay, and

97% in the 1024 nodes overlay. This result is unsurprising,

as the connection and recovery procedures of BLÅTANT-S

are non-deterministic and based on best-effort premises. The

Fig. 5. Weibull, 1024 Nodes

process to connect a new peer to the overlay is conducted in

multiple steps, as the algorithm tries to join the newly created

node to an existing peer which has a small degree: this might

require the agent responsible for the initial connection to be

forwarded for several hops in the overlay, cause delays in the

joining process, and explain the perceived inability to maintain

a LCC of 100%. It shoud be noted that the LCC remains

nonetheless close to this value, and the size of the largest

partition remains almost constant during the simulation. This

results practically rules out issues with the recovery procedure,

and provides a an insight of the robustness of BLÅTANT-S,

whose performance can be considered as remarkable when

compared to CHORD. Both protocol manage to cope with

churn, although BLÅTANT-S nodes achieve that using only

limited information for recovery, namely the neighbors of the

node that left the network, whereas CHORD peers can typically

rely on their predecessor, list of successors, and finger table.

Surprisingly, GIA is not able to maintain connections be-

tween all nodes in the overlay, despite showing the highest

number of logical links in the overlay (as it will be detailed

in the following subsection). The average size of the largest

connected component is of 72% in the 512 peers overlay, and

65% in the 1024 peers overlay. Moreover, the behavior of

GIA is highly unstable as the overlay is scaled up to 1024

nodes. This phenomenon could be explained by the topology

adaptation mechanism that favors neighbors with the highest

degree: if one of such neighbors disconnects the overlay is

greatly affected and fails to properly recover.

With the Pareto churn pattern (Figures 6 and 7) BLÅTANT-

S performs slightly better in the 512 nodes scenario, being

able to maintain a LCC of 99% of the nodes. It is however

possible to notice a small performance drop in the 1024 nodes

overlay, down to 95%. These numbers remain nonetheless

stable during the simulation, meaning that they are again due

to the joining delay rather than to a failure of the recovery

mechanism. CHORD displays once more its ability to ensure a

connected overlay, confirming that the protocol can cope well



Fig. 6. Pareto, 512 Nodes

Fig. 7. Pareto, 1024 Nodes

with the considered churn model.

As with previous experiments, GIA fails to maintain all

nodes within the largest connected component. As shown by

the results, the behavior of the protocol when faced with the

Pareto churn model is similar to that of the Weibull one: only

about 60% to 65% of the nodes are in the largest partition in

both the 512 and the 1024 peers overlay. It should be noted

that this does not necessarily affect the performance of the

querying mechanism implemented by GIA, as the use of one-

hop replication greatly reduces the risk of misses, even though

not all nodes can be reached by the query. However, for group

communication purposes GIA might not be well suited.

When focusing on the churn pattern that results in the

highest dynamicity, namely Random, it is possible to notice

how a smaller overlay penalizes both BLÅTANT-S and (in

a less important way) GIA. The faster rate of nodes joining

and leaving the overlay greatly affects BLÅTANT-S, the per-

formance of which drops to 65% before initiating a slightly

recover. This result can be attributed to the low number of

Fig. 8. Random, 512 Nodes

Fig. 9. Random, 1024 Nodes

links that need to be created in order to optimize its topology

by bounding the diameter. As the overlay is small, very few

additional connections are required, thus the robustness of the

topology is inherently affected.

By observing the results obtained in the overlay of 1024

nodes, an important drop can be noticed at the beginning of

the simulation. By analyzing the error bars we can nonetheless

classify such behavior as transient. Overall, an increased

number of peers restores the performance of BLÅTANT-S to

the same level observed with other churn models. This leads us

to affirm that the robustness of our bio-inspired protocol also

depends on the size of the overlay: the largest the overlay, the

more robust the system becomes.

As a final result, we consider the connectivity in a stable

overlay (Figures 10 and 11): unsurprisingly, both CHORD and

BLÅTANT-S are able to maintain full connectivity between all

nodes. Reflecting the previously presented results, GIA still

fails and provides an average LCC of 65% of the nodes. De-

spite a stable overlay, the variance in the results obtained with



Fig. 10. No churn, 512 Nodes

Fig. 11. No churn, 1024 Nodes

the GIA protocol remains very high compared to BLÅTANT-S

and CHORD, with the LCC spanning between 50% and 80%.

With GIA it is thus very difficult to ensure that the majority

of the nodes remain connected to the largest partition of the

overlay.

2) Connectivity with unreliable communication: The sec-

ond set of results concerning connectivity originates from

experiments made with an unreliable underlying network,

where each transmitted UDP packet has 10% probability of

not reaching its destination. This scenario is more likely to

happen when wireless communication is involved.

As shown in Figures 12 and 13, only BLÅTANT-S is able

to cope with packet loss. In particular, the LCC increases to

99% with BLÅTANT-S, whereas it drops to around 20% with

CHORD in a 512 nodes overlay and to 40% in overlays of 1024

nodes. On the other hand, GIA remains almost stable at about

40% in overlays of 512 nodes, and at 25-30% in overlays of

1024 nodes. As it will become clearer in the following of this

paper, the robustness of BLÅTANT-S comes at a cost of an

Fig. 12. Weibull, 512 Nodes, 10% drop

Fig. 13. Weibull, 1024 Nodes, 10% drop

increased traffic and higher average node degree. Nonetheless,

these results prove that BLÅTANT-S has a clear advantage over

traditional protocols in the event of packet loss, and is able to

adapt to such changes in the environment through emergent

behaviors, as no specific response to packet loss is explicitly

implemented. It should be noted that implementations of all

three protocols using TCP communication could be used to

overcome packet loss, at the expense of a higher network

overhead.

Although not shown in the presented figures, the observed

behavior of all three protocols with either no-chun or the

Pareto churn model, as well as with either 512 or 1024 nodes,

is similar to that observed with Weibull and 1024 nodes:

BLÅTANT-S is able to maintain a LCC close to 100%, CHORD

falls between 40% and 60%, whereas GIA remains around

25%-30%.



Fig. 14. Weibull, 512 Nodes

B. Topology measurements

Apart from the size of the largest connected component

we are interested in other topology measurements such as the

average path length, the average node degree, and the length

of the detected cycles. The first measure gives us an indication

of the average number of hops a query needs to be forwarded

in order to reach the majority of the nodes. The node degree

determines the complexity of the overlay, and can be used

to estimate the cost of flooding (as a message is forwarded

through neighbors at each step). Finally, the length of cycles in

the topology determines the likelihood of redundant message

transmission, and thus relates to the efficiency of flooding

protocols executed on the overlay. As for previous results,

only the significant data is presented here, whereas additional

results can be found in the appendix.

1) Topology measurements with reliable communication:

The average path length in overlays of 512 and 1024 peers

subject to the Weibull churn pattern is plotted in Figures 14

and 15 respectively. With both overlay sizes, CHORD and GIA

exhibit the lowest path lengths, with 4 and 3 hops respectively,

whereas BLÅTANT-S starts with a length close to 12 hops and

subsequently reduces it to 5. This reduction can be explained

both by the optimization process that takes place in the overlay,

as well as with the additional connections that are created by

recovery procedures triggered by churn.

By comparing the number of cycles of length less than

6 hops (Figures 16 and 17) the benefits of the optimization

process of BLÅTANT-S are evident: whereas both CHORD

and GIA topologies contain a large number of such cycles,

BLÅTANT-S is able to minimize their number to about 200 in

both the 512 as well as in the 1024 nodes overlay. We recall

that for the evaluation of CHORD we consider as neighbors

both the predecessor, the successor, the nodes in the successor

list, and the nodes in the finger table. As the network scales

up, CHORD doubles the number of cycles whereas GIA suffers

from only a slight increase. Results obtained with both the

Pareto and the Random churn patterns are very similar to the

Fig. 15. Weibull, 1024 Nodes

Fig. 16. Weibull, 512 Nodes

Weibull ones, and are reported in the appendix. A significant

results is observed when no churn occurs in the network, where

GIA generates about 1000 cycles more than in churn situations.

Finally, concerning the average node degree, in Figures 18

and 19 it is possible to notice that CHORD maintains the

highest number of logical connections, with an average of

about 10 in the 512 nodes overlay, and 11 in the 1024 nodes

overlay. As with previous comparisons, we only present graphs

for the Weibull case, as other churn models provide similar

results. GIA maintains an average of 6 neighbors (out of a

minimum of 3 and a maximum of 20), and does not show any

significant variation when the scale of the overlay is doubled.

BLÅTANT-S starts with an average of just 2 neighbors per

node, but as the network is optimized and recovery from

churn takes place, it increases this value to and average of

4 neighbors out of a maximum degree of 8.

2) Topology measurements with unreliable communication:

When communication issues are introduced in the simulation

two phenomenons can be observed: on one hand, BLÅTANT-



Fig. 17. Weibull, 1024 Nodes

Fig. 18. Weibull, 512 Nodes

Fig. 19. Weibull, 1024 Nodes

Fig. 20. Weibull, 512 Nodes, 10% drop

Fig. 21. Weibull, 1024 Nodes, 10% drop

S topologies become more complex in order to overcome the

loss of information that could lead to a partitioning of the

network; on the other hand, both CHORD and GIA wrongfully

detect nodes’ failure and drop existing connections causing a

dangerous partitioning of the overlay. These phenomenons are

clearly observed by looking at the average node degree with

Weibull churn and 10% packet loss plotted in Figure 20 and

21: CHORD disconnects an average of 8 neighbors, whereas

in GIA the node degree decreases by about 2 neighbors. In

contrast, the average degree of BLÅTANT-S nodes increases

to 7 in both the 512 and the 1024 nodes network, as a result

of the recovery procedures that are started when pheromone

trails completely evaporate. In BLÅTANT-S this behavior is

completely natural, as recovery is carried out as if peers

disconnect.

Concerning the average path length and the number of

detected graph cycles it should be noted that, for CHORD

and GIA, the result is biased by the fact that the topology

becomes partitioned. Hence the obtained values are unreliable



Fig. 22. Weibull, 512 Nodes, 10% packet drop

and do not reflect the real status of the network. As shown

in Figures 22 and 24, the average path length under Weibull

churn increases for CHORD up to 6 hops, but remains highly

unstable. With GIA no significant variation can be observed,

and the average distance remains around 3 hops. Conversely,

for BLÅTANT-S the convergence toward a stable minimum

(of less than 4 hops, compared to 5 in the reliable network

scenario) is faster than in previous experiments. Results with

different churn models and scale show similar results and a

highly unstable behavior of the CHORD protocol.

Partitioning of the network affects the number of detected

cycles in both GIA and CHORD: as the connectivity in both

overlays fails, their topologies contain very few small cycles.

Conversely, with packet loss BLÅTANT-S generates double the

number of small cycles, due to recovery procedures that create

new links that have not to match the optimization rule. This is

generally not a problem, since we argue that the major concern

when encountering communication failures is maintaining a

connected overlay and ensuring that a large part of the peers

are still reachable. Nonetheless, the number of cycles of length

less than 6 is still minimal when compared with that of CHORD

and GIA in normal conditions (reliable communication).

From the results presented in this section it is clear that

BLÅTANT-S provides a clear advantage over GIA and CHORD

when it comes to unreliable networks. The topology of

BLÅTANT-S overlays stays connected and the optimization

process still ensures that the diameter of the network remains

within its bounds and that the number of small cycles is

minimized. In this regard, the bio-inspired nature of the

algorithm plays and important role, because the loss of some

individual agents of the colony does not compromise neither

the functionality of the overlay nor its structure. Accordingly,

these experiments confirm the promising characteristics of

bio-inspired solutions that can improve the robustness and

reliability of distributed systems.

Fig. 23. Weibull, 512 Nodes, 10% packet drop

Fig. 24. Weibull, 1024 Nodes, 10% packet drop

Fig. 25. Weibull, 1024 Nodes, 10% packet drop



C. Bandwidth consumption

Another important aspect of a network protocol is the

generated overhead, namely the bandwidth consumed by main-

tenance messages. In this regard, we measured the traffic

generated by each node in each scenario, and the results are

reported in Tables IV and V for the reliable and unreliable

communication scenarios respectively. Because the average

traffic results is very consistent across all simulation runs

we report the average standard deviation across nodes rather

than across simulations. Among the three considered overlay

protocols, GIA consumes the less traffic, both with 512 and

with 1024 nodes. The topology adaptation mechanism is thus

very efficient, although, as highlighted by previous results, it

fails at maintaining a fully connected overlay. BLÅTANT-S

produces the second highest overhead, nearly 4 times higher

than GIA in the Weibull scenario on a reliable network.

However, it also performs noticeably better than CHORD,

which shows the highest bandwidth consumption.

As the network scales from 512 to 1024 nodes all protocols

perform well, as the network overhead per node does not

changes considerably. The only difference can be noticed with

CHORD, and is presumably due to the increased variety of

nodes in the finger table, which increases the cost of the sta-

bilization procedure. It is interesting to note that GIA has the

highest relative standard deviation, which surpasses in many

scenarios 100% of the average. When an unreliable network

is employed the bandwidth consumption of both CHORD and

GIA decreases, while that of BLÅTANT-S increases. This

result is due to the partitioning of the network that occours

in both CHORD and GIA, which results in less maintenance

messages sent to nodes that are thought dead by others. On the

other hand, BLÅTANT-S maintains proper connectivity across

the overlay, and the increase in traffic is in fact generated by

recovery procedures.

Surprisingly, BLÅTANT-S generates more traffic in a sta-

ble overlay (without churn), because more messages are ex-

changed by nodes in order to optimize the topology. On the

contrary, in churn situations less messages are sent, because

agents can disappear on nodes that leave the overlay. More-

over, recovery procedures naturally contribute to reduce the

diameter of the overlay, without requiring additional traffic.

In conclusion, we can argue that BLÅTANT-S is able to cope

well with both network of increasing size as well as churn

and communication failures, without generating an excessive

network overhead.

VIII. CONCLUSIONS

In this paper we presented a detailed evaluation of

BLÅTANT-S under churn and communication failures. By

means of several simulation scenarios, it was demonstrated

that BLÅTANT-S is able to cope well with typical churn

patterns and with communication failures. The connectivity

across the overlay as well as underlying optimization process

are maintained even in highly dynamic scenarios. Thanks

to the use of the OverSwarm framework, comparison be-

tween BLÅTANT-S and two traditional peer-to-peer protocols,

TABLE IV
BANDWIDTH CONSUMPTION, RELIABLE COMMUNICATION

Scenario Avg Sent Bytes/s St.Dev/Nodes

Weibull churn

CHORD 512 78.10 15.31
CHORD 1024 87.11 21.77
GIA 512 6.24 6.02
GIA 1024 6.03 5.83
BLÅTANT-S 512 24.59 18.56
BLÅTANT-S 1024 24.40 18.95

Pareto churn

CHORD 512 81.97 26.25
CHORD 1024 92.90 36.53
GIA 512 7.12 8.18
GIA 1024 7.33 8.27
BLÅTANT-S 512 20.56 16.90
BLÅTANT-S 1024 22.08 18.67

Random churn

CHORD 512 78.16 19.19
CHORD 1024 86.74 19.07
GIA 512 6.67 7.01
GIA 1024 6.18 6.17
BLÅTANT-S 512 18.78 13.76
BLÅTANT-S 1024 23.08 18.18

No churn

CHORD 512 77.98 16.86
CHORD 1024 86.74 20.37
GIA 512 7.48 5.59
GIA 1024 7.47 5.55
BLÅTANT-S 512 37.96 18.16
BLÅTANT-S 1024 38.66 19.90

TABLE V
BANDWIDTH CONSUMPTION, UNRELIABLE COMMUNICATION

Scenario Avg Sent Bytes/s St.Dev/Nodes

Weibull churn, 10% packet drop

CHORD 512 31.65 16.74
CHORD 1024 36.71 15.99
GIA 512 4.08 5.99
GIA 1024 3.92 5.17
BLÅTANT-S 512 102.53 34.58
BLÅTANT-S 1024 105.02 35.89

Pareto churn, 10% packet drop

CHORD 512 36.24 21.25
CHORD 1024 40.05 22.29
GIA 512 4.37 6.48
GIA 1024 4.75 6.76
BLÅTANT-S 512 85.35 46.61
BLÅTANT-S 1024 86.81 48.84

Random churn, 10% packet drop

CHORD 512 38.45 17.52
CHORD 1024 38.06 16.67
GIA 512 4.00 5.27
GIA 1024 3.91 5.13
BLÅTANT-S 512 84.99 39.96
BLÅTANT-S 1024 102.04 37.17

No churn, 10% packet drop

CHORD 512 35.13 4.79
CHORD 1024 34.55 5.92
GIA 512 3.06 3.92
GIA 1024 3.63 3.92
BLÅTANT-S 512 129.74 3.31
BLÅTANT-S 1024 131.69 3.47



CHORD and GIA, was made possible. The obtained results

confirm the data gathered in previous evaluations [4], and

strengthen our belief that bio-inspired solutions can bring

decisive benefits to distributed systems. On one hand, self-

organized systems such as BLÅTANT-S ensure a high quality

of service under normal circumstances, while making efficient

use of the available network resources. On the other hand, the

adaptiveness of a bio-inspired approach provides a robust and

reliable solution that can overcome major communication fail-

ures. Our current research focuses on the evaluation of other

bio-inspired solutions in order to draw hints and guidelines for

their successful implementation in distributed systems.
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Fig. 26. Random, 512 Nodes, 10% drop

Fig. 27. Random, 1024 Nodes, 10% drop

Fig. 28. Pareto, 512 Nodes, 10% drop

Fig. 29. Pareto, 1024 Nodes, 10% drop

Fig. 30. No churn, 512 Nodes, 10% drop

Fig. 31. No churn, 1024 Nodes, 10% drop



Fig. 32. Random, 512 Nodes

Fig. 33. Random, 512 Nodes

Fig. 34. Random, 1024 Nodes

Fig. 35. Random, 1024 Nodes

Fig. 36. Pareto, 512 Nodes

Fig. 37. Pareto, 512 Nodes



Fig. 38. Pareto, 1024 Nodes

Fig. 39. Pareto, 1024 Nodes

Fig. 40. Random, 512 Nodes

Fig. 41. Random, 1024 Nodes

Fig. 42. Pareto, 512 Nodes

Fig. 43. Pareto, 1024 Nodes



Fig. 44. No churn, 512 Nodes

Fig. 45. No churn, 1024 Nodes

Fig. 46. Random, 512 Nodes, 10% drop

Fig. 47. Random, 1024 Nodes, 10% drop

Fig. 48. Pareto, 512 Nodes, 10% drop

Fig. 49. Pareto, 1024 Nodes, 10% drop



Fig. 50. No churn, 512 Nodes, 10% drop

Fig. 51. No churn, 1024 Nodes, 10% drop

Fig. 52. Random, 512 Nodes, 10% packet drop

Fig. 53. Random, 512 Nodes, 10% packet drop

Fig. 54. Random, 1024 Nodes, 10% packet drop

Fig. 55. Random, 1024 Nodes, 10% packet drop



Fig. 56. Pareto, 512 Nodes, 10% packet drop

Fig. 57. Pareto, 512 Nodes, 10% packet drop

Fig. 58. Pareto, 1024 Nodes, 10% packet drop

Fig. 59. Pareto, 1024 Nodes, 10% packet drop

Fig. 60. No churn, 512 Nodes, 10% packet drop

Fig. 61. No churn, 512 Nodes, 10% packet drop



Fig. 62. No churn, 1024 Nodes, 10% packet drop

Fig. 63. No churn, 1024 Nodes, 10% packet drop

Fig. 64. No churn, 512 Nodes

Fig. 65. No churn, 512 Nodes

Fig. 66. No churn, 1024 Nodes

Fig. 67. No churn, 1024 Nodes


